PPgNN v1

This is neural network model uses data that was collected from multiple sources. Listed below are all the sources from where data was used to train the model shown on the home page. The complete data set used to train the model is stored here.

Materials and Test Types

Reference Material SX or DS Test Type Dwell Type
Rodas, Gorgannejad, Neu9 CMSX-8 SX IF None, T, C
Amaro, Antolovich, Neu10 PWA1484 SX TMF None, C
Segersäll, Leidermark, Moverare11 STAL-15 SX TMF C
Segersäll, Deng12 STAL-15 SX TMF T
Lafata, Rettberg, He, Pollock13 René N5 SX IF C
Hong, Choi, Kim, Yoo, Jo14 CMSX-4 SX IF T&C
Hong, Kang, Choi, Kim, Yoo, Jo15 CMSX-4 SX TMF None
Hong, Yoon, Choi, Kim, Yoo, Jo16 CMSX-4 SX TMF None
Egly, Lang, Löhe17 CMSX-4 SX TMF T
Moverare, Johansson, Reed18 CMSX-4 SX TMF C
Ott, Mughrabi19 CMSX-4, CSMX-6 SX IF None
Okazaki, Take, Kakehi, Yamazaki, Sakane, Arai, et al.20 CMSX-4, CM247LC SX, DS IF, TMF None, C
Wahl, Harris21 CMSX-4 PLUS SX IF None
Yandt, Wu, Tsuno, Sato22 LSC-11, CSMX-4 SX IF None, C
Okazaki, Sakaguchi23 CMSX-2, CSMX-4 SX IF, TMF None
Wahl, Harris24 CMSX-7, CMSX-8 SX IF None
Reed, Moverare, Sato, Karlsson, Hasselqvist25 STAL-15 SX TMF C
Sato, Moverare, Hasselqvist, Reed26 STAL-15 SX TMF C
Segersäll, Kontis, Pedrazzini, Bagot, Moody, Moverare, et al.27 STAL-15, STAL-15-Si, STAL-15-Re SX TMF C
Moverare, Johansson28 SCA425Hf SX TMF C
Gabb, Gayda, Miner29 René N4 SX IF None
Yu, Sun, Jin, Zhao, Guan, Hu30 SRR99 SX IF None
Han, Yu, Sun, Hu31 SRR99 SX TMF None
Fleury, Rémy32 AM1 SX IF None
Estrada Rodas33 CMSX-8 SX TMF None
Shenoy, Gordon, McDowell, Neu34 GTD-111 DS IF None, T, C
Gordon35 GTD-111 DS IF None, T, C
Engler-Pinto, Jr., Noseda, Nazmy, Fezai-Aria36 CM247LC DS TMF None
Kirka37 CM247LC DS IF, TMF None, T, C
Kirka, Brindley, Neu, Antolovich, Shinde, Gravett38 CM247LC DS IF, TMF None, T, C
Guth, Petráš, Škorík, Kruml, Man, Lang, et al.39 CM247LC DS TMF None, T, C
Okazaki, Tabata, Nohmi40 René 80H, CM247LC DS IF None
Rai, Sahu, Das, Paulose, Fernando41 CM247LC DS IF None, T
Moore, Neu42 CM247LC DS IF None, C

References

[1] Chen J, Liu Y. Fatigue modeling using neural networks: A comprehensive review. Fatigue Fract Eng Mater Struct. 2022;45: 945–979.
[2] Venkatesh V. A neural network approach to elevated temperature creep–fatigue life prediction. Int J Fatigue. 1999;21: 225–234.
[3] Zhang X-C, Gong J-G, Xuan F-Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. Int J Fatigue. 2021;148: 106236.
[4] Chen CLP, Jinwoo Kim, Ten-Huei Guo. Monte Carlo Simulation for System Damage Prediction: An Example from Thermo-Mechanical Fatigue (TMF) Damage for a Turbine Engine. In: 2006 IEEE/SMC International Conference on System of Systems Engineering. IEEE; 2006:30–34.
[5] Schooling JM, Brown M, Reed PAS. An example of the use of neural computing techniques in materials science—the modelling of fatigue thresholds in Ni-base superalloys. Materials Science and Engineering: A. 1999;260: 222–239.
[6] Chen J, Liu Y. Probabilistic physics-guided machine learning for fatigue data analysis. Expert Syst Appl. 2021;168: 114316.
[7] Chen J, Liu Y. Physics-guided machine learning for multi-factor fatigue analysis and uncertainty quantification. In: AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics; 2021.
[8] Chen J, Liu Y. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning. Addit Manuf. 2021;39: 101876.
[9] Estrada Rodas EA, Gorgannejad S, Neu RW. Creep‐fatigue behaviour of single‐crystal Ni‐base superalloy CMSX‐8. Fatigue Fract Eng Mater Struct. 2019;42: 2155–2171.
[10] Amaro RL, Antolovich SD, Neu RW. Mechanism-based life model for out-of-phase thermomechanical fatigue in single crystal Ni-base superalloys. Fatigue Fract Eng Mater Struct. 2012;35: 658–671.
[11] Segersäll M, Leidermark D, Moverare JJ. Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy. Materials Science and Engineering: A. 2015;623: 68–77.
[12] Segersäll M, Deng D. A comparative study between in- and out-of-phase thermomechanical fatigue behaviour of a single-crystal superalloy. Int J Fatigue. 2021;146: 106162.
[13] Lafata MA, Rettberg LH, He MY, Pollock TM. Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds. Metallurgical and Materials Transactions A. 2018;49: 105–116.
[14] Hong HU, Choi BG, Kim IS, Yoo YS, Jo CY. Characterization of deformation mechanisms during low cycle fatigue of a single crystal nickel-based superalloy. J Mater Sci. 2011;46: 5245–5251.
[15] Hong HU, Kang JG, Choi BG, Kim IS, Yoo YS, Jo CY. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy. Int J Fatigue. 2011;33: 1592–1599.
[16] Hong HU, Yoon JG, Choi BG, Kim IS, Yoo YS, Jo CY. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy. Int J Fatigue. 2014;69: 22–27.
[17] Egly T, Lang K, Lohe D. Influence of phase shift and strain path on the thermomechanical fatigue behavior of CMSX-4 specimens. Int J Fatigue. 2008;30: 249–256.
[18] Moverare JJ, Johansson S, Reed RC. Deformation and damage mechanisms during thermal–mechanical fatigue of a single-crystal superalloy. Acta Mater. 2009;57: 2266–2276.
[19] Ott M, Mughrabi H. Dependence of the high-temperature low-cycle fatigue behaviour of the monocrystalline nickel-base superalloys CMSX-4 and CMSX-6 on the γ/γ′-morphology. Materials Science and Engineering: A. 1999;272: 24–30.
[20] Okazaki Masakazu, Take K, Kakehi K, Yamazaki Y. Collaborative research on thermo-mechanical and isothermal low-cycle fatigue strength of Ni-base superalloys and protective coatings at elevated temperatures in the society of materials science, Japan (JSMS). ASTM Special Technical Publication. 2003;4: 180–194.
[21] Wahl JB, Harris K. CMSX-4® Plus Single Crystal Alloy Development, Characterization and Application Development. In: Superalloys 2016. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016:25–33.
[22] Yandt S, Wu X-J, Tsuno N, Sato A. Cyclic Dwell Fatigue Behaviour of Single Crystal Ni-Base Superalloys with/without Rhenium. In: Superalloys 2012. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012:501–508.
[23] Okazaki M, Sakaguchi M. Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy. Int J Fatigue. 2008;30: 318–323.
[24] Wahl JB, Harris K. New Single Crystal Superalloys, CMSX-7 and CMSX-8. In: Superalloys 2012. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012:177–188.
[25] Reed RC, Moverare JJ, Sato A, Karlsson F, Hasselqvist M. A New Single Crystal Superalloy for Power Generation Applications. In: Superalloys 2012. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012:197–204.
[26] Sato A, Moverare JJ, Hasselqvist M, Reed RC. On the Mechanical Behavior of a New Single-Crystal Superalloy for Industrial Gas Turbine Applications. Metallurgical and Materials Transactions A. 2012;43: 2302–2315.
[27] Segersäll M, Kontis P, Pedrazzini S, et al. Thermal–mechanical fatigue behaviour of a new single crystal superalloy: Effects of Si and Re alloying. Acta Mater. 2015;95: 456–467.
[28] Moverare JJ, Johansson S. Damage mechanisms of a high-Cr single crystal superalloy during thermomechanical fatigue. Materials Science and Engineering: A. 2010;527: 553–558.
[29] Gabb TP, Gayda J, Miner R v. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part II. Low cycle fatigue behavior. Metallurgical Transactions A. 1986;17: 497–505.
[30] Yu J, Sun X, Jin T, Zhao N, Guan H, Hu Z. High temperature creep and low cycle fatigue of a nickel-base superalloy. Materials Science and Engineering: A. 2010;527: 2379–2389.
[31] Han GM, Yu JJ, Sun XF, Hu ZQ. Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy. Materials Science and Engineering: A. 2011;528: 6217–6224.
[32] Fleury E, Rémy L. Low cycle fatigue damage in nickel-base superalloy single crystals at elevated temperature. Materials Science and Engineering: A. 1993;167: 23–30.
[33] Estrada Rodas AE. Microstructure-Sensitive Creep-Fatigue Interaction Crystal-Viscoplasticity Model for Single-Crystal Nickel-Base Superalloys. Ph.D Dissertation, Georgia Institute of Technology, Atlanta, GA, USA. 2017.
[34] Shenoy MM, Gordon AP, McDowell DL, Neu RW. Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy. J Eng Mater Technol. 2005;127: 325–336.
[35] Gordon AP. Crack Initiation Modeling of a Directionally-Solidified Nickel-base Superalloy. Ph.D Dissertation, Georgia Institute of Technology, Atlanta, GA, USA. 2006.
[36] Engler-Pinto JCC, Noseda C, Nazmy MY, Rezai-Aria F. Interaction Between Creep and Thermo-Mechanical Fatigue of CM247LC-DS. In: Superalloys 1996 (Eighth International Symposium). TMS; 1996:319–325.
[37] Kirka M. Thermomechanical Behavior of a Directionally Solidified Nickel-base Superalloy in the Aged State. Ph.D Dissertation, Georgia Institute of Technology, Atlanta, GA, USA. 2014.
[38] Kirka MM, Brindley KA, Neu RW, Antolovich SD, Shinde SR, Gravett PW. Parameters influencing thermomechanical fatigue of a directionally-solidified Ni-base superalloy. Int J Fatigue. 2015;81: 48–60.
[39] Guth S, Petráš R, Škorík V, et al. Influence of dwell times on the thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy. Int J Fatigue. 2015;80: 426–433.
[40] Okazaki M, Tabata T, Nohmi S. Intrinsic stage i crack growth of directionally solidified Ni-Base superalloys during low-cycle fatigue at elevated temperature. Metallurgical Transactions A. 1990;21: 2201–2208.
[41] Rai RK, Sahu JK, Das SK, Paulose N, Fernando C. Creep‐fatigue deformation micromechanisms of a directionally solidified nickel‐base superalloy at 850°C. Fatigue Fract Eng Mater Struct. 2020;43: 51–62.
[42] Moore ZJ, Neu RW. Creep fatigue of a directionally solidified Ni-base superalloy - smooth and cylindrically notched specimens. Fatigue Fract Eng Mater Struct. 2011;34: 17–31.
[43] Kingma D, Ba J. Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations. San Diego: 3rd International Conference on Learning Representations; 2014.
[44] Ruder S. An Overview of Gradient Descent Optimization Algorithms. arXiv preprint arXiv:1609.04747. September 2016.
[45] Scardapane S, Wang D. Randomness in neural networks: an overview. WIREs Data Mining and Knowledge Discovery. 2017;7: 18.
[46] Arrell D, Hasselqvist M, Sommer C, Moverare J. On TMF Damage, Degradation Effects, and the Associated T-Min Influence on TMF Test Results in y/y Al. In: Superalloys 2004 (Tenth International Symposium). TMS; 2004:291–294.
[47] Arakere NK, Orozco E. Analysis of Low Cycle Fatigue Properties of Single Crystal Nickel-Base Turbine Blade Superalloys. High Temperature Materials and Processes. 2001;20: 403–419.
[48] Segersäll M, Moverare JJ, Simonsson K, Johansson S. Deformation and Damage Mechanisms during Thermomechanical Fatigue of a Single-crystal Superalloy in the <001> and <011> Directions. In: Superalloys 2012 (Twelfth International Symposium). John Wiley & Sons, Inc.; 2012:215–223.
[49] Liu L, Meng J, Liu J, Zhang H, Sun X, Zhou Y. Investigation on low cycle fatigue behaviors of the [001] and [011] oriental single crystal superalloy at 760 °C. Materials Science and Engineering: A. 2018;734: 1–6.
[50] Kirka MM, Brindley KA, Neu RW, Antolovich SD, Shinde SR, Gravett PW. Influence of coarsened and rafted microstructures on the thermomechanical fatigue of a Ni-base superalloy. Int J Fatigue. 2015;81: 191–201.